Summary of contents: Separations properties: T1, T2 (Hausdorff), T2 an a half; covers and open covers, subcovers and finite subcovers; compact spaces; Heine-Borel theorem (compact if and only if closed and bounded); open and locally finite refinements; paracompactness; metrisable spaces and Stone's theorem; long line (or Alexandroff line); partition of unity subordinate to an open cover; examples; connectedness and proof that M is connected if and only if M and the empty set are the only subsets which are both open and closed; path-connectedness and proof that path-connectedness implies connectedness; homotopic curves on a topological space; concatenation of curves; fundamental group; group isomorphism; topological invariants and classification of topological spaces; examples: 2-sphere, cylinder, 2-torus.
Full lecture notes (work in progress): click here
Lecture Notes for this lecture:
No comments :
Post a Comment