Summary of contents: topologies and topological spaces; examples; chaotic and discrete topologies; coarser (or weaker) and finer (or stronger) topologies; open subsets; open balls; standard topology on R^d with proof; induced (or subset) topology with proof; product topology; sequences, converge and limit points; open neighbourhoods; definitely constant sequences; continuity of maps between topological spaces; examples; homeomorphisms and homeomorphic spaces.
Full lecture notes (work in progress): click here
Lecture Notes for this lecture:
No comments :
Post a Comment