Summary of contents: definition of maps (or functions) between sets; structure-preserving maps; identity map; domain, target and image; injective, surjective and bijective maps; isomorphic sets; classification of sets: finite and countably and uncountably infinite; cardinality of a set; composition of maps; commutative diagrams; proof of associativity of composition; inverse map; definition of pre-image and properties of pre-images (with proof); equivalence relations: reflexivity, symmetry, transitivity; examples; equivalence classes and quotient set; well-defined maps; construction of N, Z, Q, R (natural, integer, rational and real numbers); successor and predecessor maps; nth power set; addition and multiplication of numbers; canonical embeddings.
Full lecture notes (work in progress): click here
Lecture Notes for this lecture:
No comments :
Post a Comment